
Early LLNL Application Scaling Results on BlueGene/L

(Presented at SC04, Pittsburgh PA, November 8-12, 2004)

National Nuclear Security Administration

Advanced Simulation and Computing Program

Andrew W. Cook, Jeffrey A. Greenough, Francois Gygi, Frederick H. Streitz,
Alison Kubota, Vasily V. Bulatov, Steven Louis

Lawrence Livermore National Laboratory

UCRL-TR-207656

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor
the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence
 Livermore National Laboratory under Contract W-7405-ENG-48.

MIRANDA

Code Contacts: Andy Cook, Bill Cabot and Peter Williams, LLNL

What is it?

Miranda is a high order hydrodynamics code for computing fluid instabilities and turbulent
mixing. It employs FFTs and band-diagonal matrix solvers for computing spectrally-
accurate derivatives, combined with high-order integration methods for time advancement;
e.g., fourth-order Runge-Kutta. Fluid properties, i.e., viscosity, diffusivity and thermal
conductivity, are computed from kinetic theory. The code contains solvers for both
compressible and incompressible flows. It has been used primarily for studying Rayleigh-
Taylor (R-T) and Richtmyer-Meshkov (R-M) instabilities, which occur in supernovae and
Inertial Confinement Fusion (ICF).

Turbulent flow mixing of two fluids using large-eddy simulation of R-T instability.

What is the benefit from scaling it to large number of processors?

The grid resolution needed to support a sufficiently broad range of dynamical
scales for turbulent flow is severe. Unless the resolution requirements are met, the flow
cannot reach a state independent of both initial conditions and boundary conditions. Hence,
virtually all past measurements of R-T and R-M growth rates have been sensitive to grid
resolution (i.e., they were not converged). Very large simulations, using well in excess of
1000 grid points in each of three directions, are needed to support the large range of length
scales necessary to grow R-T and R-M instabilities to full turbulence. Smaller simulations
simply cannot capture true rates of growth and mixing due to initial/boundary effects.

How has the code been optimized on BG/L?

The code has been optimized for the BG/L torus by distributing the data among a Cartesian
arrangement of processors. All portions of the code operating in a master-slave CPU
manner have been replaced with fully parallel routines. Memory overhead has been
reduced; the FFTW library has been ported and new I/O routines are currently being tested.

How has the code been tested for scaling and performance?

The most recent scaling results for Miranda are shown below:

8 x 8 x 512 grid/CPU in virtual mode:
CPUs Time/Step(s) % comm. time
8192 9.84 86.3
16384 10.4 86.5
32768 8.15 82.2

8 x 8 x 1024 grid/NODE in coprocessor mode:
NODEs Time/Step(s) % comm. time
512 3.16 34.3
1024 3.79 36.3
2048 3.96 39.8
4096 5.50 56.9
8192 7.02 65.3
16384 12.5 79.1

Does a demo exist? If so, what is it and what does it need?

YES – There will be a live demonstration of Miranda on a 128 node BG/L partition.

Description of demo:

Title: "Large Eddy Simulation of Rayleigh-Taylor Instability"

Importance: Rayleigh-Taylor instability is an important design consideration in Inertial
Confinement Fusion. It also influences creation of heavy elements inside supernovae. A
large computational domain, and hence a large number of grid points, is required to reach a
state independent of both initial conditions and boundary conditions. The visualization
shows turbulent flow mixing of two fluids using large-eddy simulation of Rayleigh-Taylor
instability.

The demonstration uses the ViSUS high-performance streaming infrastructure to help solve
the long-standing problem of fast and flexible data availability for large-scale simulations. A
simulation linking ViSUS has good scalability and can stream and dump its data directly in
a format that enables high performance I/O for a range queries including (i) arbitrary
domain decomposition useful for restarting simulations with a varying number of
processors, and (ii) progressive multi-resolution streaming useful for remote data retrieval,
processing and visualization.

With ViSUS a scientist can monitor in real time the progress of scientific simulation directly
from his office without transferring the data to the local disk of his workstation. A grid of 8-
billion-nodes can be explored interactively on a laptop computer using a wireless
connection to a remote repository. Overall the ViSUS streaming infrastructure and data
model allows to minimize the problems and delays that continuous data movements
introduce in a modern working environment where a scientist needs to access routinely
heterogeneous computing resources distributed over local and wide area networks.

Who will run the demo at SC04?

Jeff Hagelberg, LLNL

RAPTOR

Code Contacts: Jeff Greenough, LLNL and Charles Rendleman, LBNL

What is it?

Raptor is a multi-physics Eulerian Adaptive Mesh Refinement (AMR) code used for
applications at LLNL including astrophysics, Inertial Confinement Fusion (ICF) and shock-
driven instabilities and turbulence. Raptor can be used to simulate purely fluid dynamics
systems by solving the Eulerian equations (inviscid, non-conducting) or the Navier-Stokes
equations (viscous, conducting) using a higher-order Godunov finite difference method.
Raptor can also be used to simulate more complex physical systems where the fluids are
coupled to the radiation field, such as in ICF or astrophysics. A fully implicit treatment is
used to solve the radiation-diffusion equation coupled to the matter internal energy.

Raptor is based on the BoxLib and AmrLib general software infrastructure developed and
maintained by the Center for Computational Sciences and Engineering at Lawrence
Berkeley National Laboratory. BoxLib provides C++ foundation classes for templated data
containers and their efficient manipulation. AmrLib adds framework support in C++ that
extends BoxLib to efficiently support the demands of block-structured AMR. The entire
software system, both base and framework libraries, as well as applications software and
physics algorithms, has been optimized for efficient use of modern large-scale parallel
computing platforms.

What is the benefit from scaling it to large number of processors?

In computational fluid dynamics (CFD), more resolution means that more of the physical
length scales of interest are accurately represented by the numerical representation.
Resolution is achieved by using more grid points per unit length in physical dimensions.
Simulations also provide access to all of the data in the computational domain, e.g. point-
wise density, momentum and energy, whereas experimental facilities are limited to either
integral measures or single value point-wise measurements.

Simulations at full scale on BG/L will offer the computational power to gain an order of
magnitude more resolution in simulations of three-dimensional shock-driven systems. Two
of the systems to be investigated numerically on BG/L are modeled after the research
shock tubes at the University of Arizona (low Mach number facility) and the University of
Wisconsin-Madison (high Mach number facility) as well and laser driven systems like the
National Ignition Facility (ultra-high energy density facility).

How has the code been optimized on BG/L?

To date, the primary optimizations made to the Raptor code in porting it to BG/L have been
modifications required by the xlC (IBM C++) compiler. Our testing on BG/L has shown that
some optimizations are required to run at full machine scale and these optimizations are
now in progress.

When using AMR methods on systems that evolve in time like our CFD applications, the
grid hierarchy must be regenerated as required to maintain high resolution at the structures
of interest. The current algorithm duplicates the mapping of data blocks to processors
(distribution mapping) on all compute nodes and uses an approximately N2 algorithm to
create a new grid hierarchy (regridding). The new algorithm (development/implementation
in progress) is based on a set of simplifying assumptions on the size of the data blocks and

10.0 msec

When a perturbed density interface, separating two different
materials, is traversed by a shock wave, vorticity is baroclinically
generated at the interface by mis-alignment of the pressure and
density gradients. The vorticity field then evolves due to the induced
velocities distorting the density interface. This development is called
the Richtmyer-Meshkov instability*. In the accompanying picture, we
see an iso-surface rendering of the late time structure (t = 10
milliseconds) of a perturbed interface initially separating air (on the
left and shown in blue) and SF6 (on the right and removed to aid
visualization). The initial perturbation (t = 0.0 msec) is a spectrum of
modes peaked at a wavelength of 1/16 the the transverse length.
The incident shock Mach number is 1.3. The initial perturbation
spectrum is imprinted on the interface and persists to long time with
no appreciable changes.

After the nonlinear interface is re-accelerated by a counter-
propagating shock wave, the interface transitions to turbulence (t =
12 msec). There are now a wide range of lengthscales present in the
flow.

*Although it is termed an instability, it is not an instability in the
classical sense.

Figures excerpted from UCRL-PRES-205229.

0 msec

12.0 msec

 Simulation of Richtmyer-Meshkov Instability

how they are laid out on any level of refinement. The new algorithm’s benefits are to
eliminate the memory overhead of representing the distribution mapping on the compute
nodes and to provide an order N re-gridding algorithm.

How has the code been tested for scaling and performance?

1. Tests have been performed while running Raptor with just a single level of data across
the computational domain, i.e. no adaptivity was used. On the Yorktown system, using a
data block size of 323 with one block per compute node, we observe a time per step
(seconds per step) of 1.95 sec on up 1024 processors. This is similar timing to that
obtained on MCR (LLNL) using two 2.2GHz Pentium 4 CPU’s per node and an Elan 3
interconnect.

2. Testing on an 8k compute node partition (Coprocessor mode) at IBM Rochester, with
help from James Sexton at IBM, has also yielded successful tests with up to 8 323 data
blocks per node. Weak scaling results are shown in the following two charts. For each
point in the plot, there was a single 323 data block per node. A speed-up of over 10%
compared to the initial 32-node result is shown at full 8k partition size. Plotting the data
another way, as in the second chart below, shows better than linear scaling up to 8k
compute nodes. The blue line shows what would be perfect scaling and the data points
show that the actual speedup exceeds this.

Raptor Weak Scaling on BG/L to 8K nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10 100 1000 10000

 N = Number of Nodes

sc
al

in
g

 =
 T

(3
2)

/t
(P

)

Raptor Weak Scaling Speedup on BG/L to 8K nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N = Number of Nodes

S
p

ee
d

u
p

 (
as

su
m

in
g

 S
p

ee
d

u
p

(3
2)

 =
 3

2)

3. To measure Raptor’s strong scaling on up to the full BG/L machine at 64k compute
nodes, runs were made on 8K nodes, by successively increasing the problem size per
node from 1 x 323, 2 x 323 , 4 x 323 and 8 x 323 data blocks. The next section gives a
summary of the raw data used in here. One analysis that is possible from this is to make
strong scaling projections to BG/L systems up to 64K nodes. This is done by noticing
that starting from the 8 x 323 run on 8K nodes, if the number of nodes were to be
increased to 16K, 32K, and 64 K, the problem size per node would be 4 x 323 , 2 x 323 ,
1 x 323 , respectively.

Hence in the ideal case of perfect scaling
t(N=B*8192,8/B) = t(N=8192,8)/B where B is the number of 32^3 blocks. The scaling
performance can then be obtained as the ratio of this ideal time to the actual run time
with B blocks. Thus,

Scaling (N=B*8192,8/B) = t(N=8192,8)/[B*t(N=8192,B)]

and the speedup is given by

Speedup(N=B*8192,8/B) = N*Scaling(N=B*8192,8/B).

These are plotted in the charts below and give an indication of how the runs should
scale on larger systems, provided that the MPI performance is dominated by surface to
volume ratio and not by other quantities such as MPI collective functions, which are
neglected here.

Strong Scaling Raptor on BG/L
projected from 8K nodes

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20000 40000 60000

N=Number of Nodes

S
ca

lin
g

 (
p

ro
je

ct
ed

 f
ro

m
 8

K
 n

o
d

es
)

Strong Scaling Speedup for Raptor on BG/L (projected from 8K)

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000

N= Number of Nodes

S
p

ee
d

u
p

 (
p

ro
je

ct
ed

 f
ro

m
 8

K
)

4. The raw performance data for 1 x 323, 2 x 323 , 4 x 323 and 8 x 323 data blocks per
nodes (successive doubling of node workload) on the 8k partition in Coprocessor mode
is show below. Notice that the time to compute for B blocks increases in a sub-linear
fashion by comparing the data to the solid line which shows perfect linear scaling. Data
below this line exhibits better scaling. This means that doubling the workload per node
requires less than a factor of two more work. More specifically the time increases by
only 1.7, instead of the full factor of two for each doubling. This may come from using
BG/L in Coprocessor mode where the second CPU is effectively used to help manage
MPI communications overhead.

Raptor on 8K BG/L Nodes
Effect of Varying Node Workload

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

of 32^3 Blocks on the Node

N
o

rm
al

iz
ed

 T
im

e
R

el
at

iv
e

to
 1

 B
lo

ck

P
er

 n
o

d
e

Does a demo exist? If so, what is it and what does it need?

YES – There will be a live demonstration of Raptor on a 128 node BG/L partition.

Description of demo:

Title: Numerical Simulation of Richtmyer-Meshkov (RMI) Instability”

Importance: RMI is an important instability in any physical flow containing shock waves and
density interfaces, such as astrophysics, Inertial Confinement Fusion and high-speed
combustion. The simulation shows a perturbed material interface (light gas on the left and
heavy gas on the right) being accelerated by a shock wave and then evolving in time. The
shock wave (not shown by the visualization software) moves from left to right across the
interface. The underlying grid consists of 128 (x) by 64 (y) by 64 (z) cells decomposed into
128 data blocks that are distributed across the 128-node BG/L hardware.

Vorticity (curl of the velocity vector) is deposited at the interface due the misalignment of
the pressure gradient (shock wave) and the density gradient (perturbed interface) as the
shock wave traverses the interface. The vorticity field induces material motion that causes
growth of the perturbations and mixing of the light and heavy gases. The visualization
shows the small-scale initial perturbations growing to larger amplitude. In addition, three-
dimensional “mushroom” structures coalesce into larger scale structures. As time goes on,
the coalescing process slows. This is due to the fact that the turbulent kinetic energy
contained in the developing interface is decaying with time.

Who will run the demo at SC04?

Jeff Hagelberg, LLNL

Qbox

Code Contacts: Francois Gygi and Erik Draeger, LLNL

What is it?

Qbox is a massively parallel C++ implementation of First-Principles Molecular Dynamics. It
is under development at the LLNL Center for Applied Scientific Computing (CASC) by
Francois Gygi and collaborators. Qbox implements the plane-wave pseudo-potential
method within Density Functional Theory (DFT), and is routinely used on many LLNL
platforms for simulations of condensed matter subjected to extreme conditions, as well in
applications to nanotechnology and biochemistry.

Qbox features an advanced XML-based interface that allows it to interact easily with other
simulation codes. This can be used to run multi-scale simulations, coupling different
physical models of matter, such as DFT and the more accurate Quantum Monte Carlo
(QMC) method.

The figure shown at the left was recently used on the
cover of the October 7, 2004 edition of the journal
Nature, and illustrates the transition from a molecular
solid (top) to a quantum liquid (bottom) expected to
occur in hydrogen under high pressure. Livermore
scientists used the ab initio molecular dynamics code
GP (precursor of Qbox) to discover a new melt curve
of hydrogen, resulting in the possible existence of a
novel superfluid - a brand new state of matter.

LLNL researchers present the results of ab initio
calculations of the hydrogen melt curve at pressures
up to 2 million atmospheres. The measurement of the
high-pressure phases of hydrogen has been the
focus of numerous experiments for nearly a century.
However, the phase boundary that separates the
solid and the liquid has remained relatively unknown.

The team's calculations not only predict a maximum
in the melt line, but also provide a microscopic model
showing its physical origin in changes in the
intermolecular interaction - significantly different from
earlier models. Based on their new understanding for
the physics behind the melting of hydrogen, the
researchers are able to propose new experiments to
measure the solid-liquid phase boundary. [For more
information, please go to www.nature.com]

What is the benefit from scaling it to large number of processors?

Qbox is currently used in production runs on a 23 TFlops, 4000-processor platform installed
at LLNL. Scalability to full machine size has been demonstrated in simulations involving
over 3000 atoms. BG/L offers the exciting possibility of running coupled simulations on a
scale never before possible, thus considerably enhancing the accuracy of first-principles
simulations.

Among the problems that will become tractable with BG/L, some are of particular relevance
to the DOE/NNSA Stockpile Stewardship Program. They include the computation of solid-
liquid phase transformations of heavy metals at high pressure and high temperature. These
simulations are intractable today, even using terascale computers. Other problems of
interest include the study of the growth mechanisms of nanoparticles, and enzymatic
reactions in biomolecules.

How has the code been optimized on BG/L?

Written in ISO-C++, Qbox makes extensive use of efficient parallel numerical algebra
libraries, as well as optimized numerical kernels that exploit the double FPU units of the
BG/L PowerPC processors.

How has the code been tested for scaling and performance?

Scalability tests on BG/L show that Qbox can achieve a 3x speedup when solving a given
problem on 16384 nodes instead of 4096 nodes. This represents a 75% parallel efficiency.
Further optimization is under way.

Does a demo exist? If so, what is it and what does it need?

Not at this time.

Description of demo:

N/A

Who will run the demo at SC04?

N/A

ddcMD

Code Contacts: Fred Streitz, Jim Glosli and Mehul Patel, LLNL

What is it?

ddcMD is a scalable, general purpose code for performing classical molecular dynamics
(MD) simulations using the highly accurate MGPT potentials. These semi-empirical
potentials, which are based on a rigorous expansion of many body terms in the total
energy, are needed in order to investigate quantitatively the dynamic behavior of transitions
metals and actinides under extreme conditions.

A ddcMD simulation showing unexpectedly slow solidification
of a metal undergoing high-temperature compression

What is the benefit from scaling it to large number of processors?

To date, accurate atomic scale simulation of materials behavior has been constrained by
the maximum size that can be modeled, as un-physically small simulation cell sizes
introduce artificial “size effects” into the dynamics. Scientists must either draw inferences

from such small simulations, or make sufficient approximations to the underlying physics
(i.e., use a “cheaper” potential) to enable larger simulations. By scaling the simulation to
tens of thousands of processors, we will be able to model for the first time the dynamic
behavior of transition metals and actinides with results independent of system size, while
using the most accurate semi-empirical potentials available. These size independent
results are needed in order to develop meso-scale and continuum level models of behavior.

How has the code been optimized on BG/L?

We optimized our algorithm for updates of domain decomposition, which previously had
caused a linear scaling with the number of processors. This adverse scaling would have
been impossible to diagnose without the large number of processors available for testing at
BG/L. Currently the only inefficiency that affects the scaling is load leveling on the
processors, which appears to limit us to approximately 90% efficiency. (i.e., about 10% of
the total elapsed time is spent in communication.)

How has the code been tested for scaling and performance?

We performed runs using a fixed problem size per processor (weak scaling limit) on up to
16,384 processors (with assistance from Jim Sexton at IBM). The results (shown below for
two different problem sizes) demonstrate a very weak dependence on number of cpus. We
see no impediment at this time to scaling our simulations beyond even the 8 million atoms
used for these test runs – close to the largest simulation of MGPT atoms to date.

The most recent weak scaling results in the following chart for ddcMD are shown below:

1000 particles per processor: 500 particles per processor:

CPUs Elapsed Time # CPUs Elapsed Time
4 32.5 1 12.8
8 32.1 2 15.3
16 31.0 4 17.3
32 31.9 16 16.5
64 33.4 64 17.2
128 32.9 128 19.2
256 35.8 8192 18.2
4096 34.7 16384 17.5

Does a demo exist? If so, what is it and what does it need?

Not at this time.

Description of demo:

N/A

Who will run the demo at SC04?

N/A

MDCASK

Code Contacts: Alison Kubota and Tom Spelce, LLNL

What is it?

MDCASK simulates the motion of large collections of individual atoms using the classical
laws of Newtonian mechanics and electrostatics. The basic features of the code, as in any
“classical” (as opposed to “quantum mechanical”) molecular dynamics (MD) code, are (1)
an algorithm for the integration of the equations of motion, (2) an inter-atomic potential, and
(3) boundary conditions and constraints.

For a given problem the code first defines initial positions for the atoms (such as in lattices
for crystalline solids), calculates the forces on each atom using the inter-atomic potential
and atom positions, updates the velocities and then uses the new velocities to obtain new
positions for the atoms. This cycle is repeated to evolve the system over time. MDCASK is
capable of using a wide variety of inter-atomic potentials that allows for the simulation of
metals, semiconductors, insulators, glasses, etc. Each atomic material and spatial
configuration type requires its own potential. These potentials are derived from atomic
theory and quantum mechanical, “ab initio” calculations.

What is the benefit from scaling it to large number of processors?

It is the specifics of atomistic behavior that gives rise to phenomenon at the meso- and
macroscopic scale that are in turn responsible for the wide range of material properties
important for science and industry. Larger computer systems such as BG/L allow scientists
to span the gap between the microscopic scale of individual atoms to the meso-scale,
thereby providing critical validation of meso- and macroscopic models of material
properties. There are also some phenomena, such as the competition between different
possible lattice structures during re-solidification that require very large collections of atoms
to properly represent. At the largest processor counts, it will also be possible to perform full,
3D simulations of hydrodynamic instabilities important to the ICF program without any of
the approximations inherent in more commonly used fluid dynamics simulations.

How has the code been optimized on BG/L?

In some sense, it was BG/L that was designed to optimally meet the needs of classical MD
simulation codes such as MDCASK. Using a “spatial” decomposition to divide a large
collection of atoms into small blocks, MDCASK inherently has a very high ratio of
computation to communication. BG/L provides a very high bandwidth, low latency
communication network to nearest neighbors, which allows the code to scale efficiently to

tens of thousands of processors. Single CPU performance has increased four-fold via
optimization techniques available in the IBM compilers. Further performance tuning is
underway which will enable the use of IBM’s optimized math libraries.

How has the code been tested for scaling and performance?

A “weak scaling” test has been conducted in which a constant workload per processor (of
about 250,000 atoms) was tested in powers of two from one processor to 16K(16,384)
processors. Over this very large range of processor counts, the runtime remains constant.
This excellent scaling behavior is a powerful validation that the design objectives of BG/L to
service the needs of classical MD simulation codes such as MDCASK have been met in
full. Continued perfectly linear scaling to 64K(65,536) processors is expected when the full
BG/L system is installed at LLNL in June 2005. Scaling tests to ascertain the speedup
possible from using both processors on a node are now in process.

Does a demo exist? If so, what is it and what does it need?

Not at this time.

Description of demo:

N/A

Who will run the demo at SC04?

N/A

MDCASK, weak scaling, 1 CPU/node

0
1
2
3
4
5
6
7
8
9
10

0 5,000 10,000 15,000 20,000

x
 1

0
,0

0
0

Number of CPUs

A
to

m
s

u
p

d
a
te

d
/

se
c/

C
P

U

ParaDiS

Code Contacts: Vasily Bulatov and Gregg Hommes, LLNL

What is it?

ParaDiS (for Parallel Dislocation Simulator) is a new code developed at LLNL for direct
computation of plastic strength of materials by tracking simultaneous motion of millions of
dislocation lines. Simulations using ParaDiS are closing the computational performance
gap long recognized to prevent physicists and materials scientists from understanding the
fundamental nature of self-induced strengthening (or hardening) and the origin of intricate
patterns which dislocation spontaneously form under mechanical straining. The code is
primarily written in C and uses the MPI library for communication among the processors.

ParaDiS relies on a line-tracking model that only considers the defects and not the rest of
the material. Compared to the various mesh-based approaches, the line-tracking model
cuts down the number of degree of freedom dramatically but this saving comes at a price: it
now takes considerable effort to track the constantly evolving topology of the dislocation
network. The resulting bookkeeping can quickly become horrendously complicated making
it nearly impossible to write a working parallel code. ParaDiS achieves an important
breakthrough in topology handling by using a minimal set of (irreducible) topological
operators for all of its network bookkeeping.

Another serious challenge is a natural tendency of dislocation lines to cluster in space
(owing to the long-range interactions among the lines) and develop highly heterogeneous
distributions of degrees of freedom making it difficult to achieve a good load balance. To
maintain scalability ParaDiS recursively partitions the problem domain first in X, then in Y,
and finally in Z dimensions. At regular intervals, ParaDiS re-evaluates the computational
load and shifts the domain boundaries to maintain a good balance.

Because dislocation interaction is long ranged, any two line segments interact with each
other in a ParaDiS simulation. For computational efficiency, all segment-segment
interactions are partitioned into local and remote contributions, based on proximity of the
interacting segments. The local interactions are computed explicitly for each local segment
pair, while the effect of all remote segments in a single cell are lumped together into a
super-segment contribution, using a Fast Multipole algorithm. Still, evaluation of forces
among dislocation segments typically takes more than 80% of compute time.

Plastic strength σ (in MPa) of a simulated
material as a function of strain ε.

A snapshot of a line dynamics simulation in ParaDiS.

Shown above is a snapshot of a typical line network configuration obtained in a ParaDiS
simulation. Through a series of such configurations, dislocation lines move around,
interact, multiply and recombine. Simulations of this kind provide wealth of information
about various scenarios of dislocation behavior both at the level of individual dislocations

and at the level of large collectives of interacting
dislocations. Simultaneously, the overall strength
of the simulated material is directly computed as a
function of strain (see figure at left). ParaDiS
simulations are now being used for direct
comparison with experimental data obtained under
the same straining conditions. Once validated
against experiments, ParaDiS simulations will be
used to accurately predict the behavior of
materials under conditions not accessible to
experimental measurements, such as under very
high pressure, temperature and strain rates.

What is the benefit from scaling it to large number of processors?

Among various challenges worthy of large-scale computational attack, understanding the
nature of strain hardening and dislocation patterning in metals is arguably the most famous
and holds a special, nearly sentimental value among researchers in the area of material
strength. If direct line dynamics simulations can be shown to accurately reproduce
dynamic hardening transitions that occur naturally during crystal deformation1, even
skeptics will be convinced that the microscopic physical theory of crystal strength has
arrived in the form of line dynamics. With this in mind, we decided to gear ParaDiS towards
a single large-scale “hero” simulation that will cover the length and time scales sufficient to
observe the hardening transitions that occur naturally, as a result of collective motion and
rearrangement of dislocations. Careful estimates show that to be able to naturally account
for hardening and dislocation patterning and avoid “small volume” artifacts, the model
should include from 1M to 100M dislocation segments. Furthermore, the evolution of such
large dislocation groups will have to be traced over millions of time steps, to reach the
strain levels at which the hardening transitions are observed. Line dynamics capabilities
available up to now at LLNL and elsewhere stop short of these target performance figures
by some 2-3 orders of magnitude. Massively parallel computing is the only viable pathway
to closing this performance gap.

In our recent simulations we identified an interesting strategy for planning and executing
the simulations. In the course of deformation, dislocations multiply increasing their
numbers by 2-3 orders of magnitude. For this reason, it is possible and sufficient to start
with a relatively small model and let it grow on a small machine. Then, following a steadily
growing number of dislocations, the job should be moved to progressively larger machines.
This sort of progression worked very well when we scaled our simulation up from 12 to 100,
then to 200 and, eventually, to 1,500 CPUs on MCR. The same strategy is now applied on
the growing Blue Gene /L machine, which is planned to have 131,072 processors when
delivered to LLNL in 2005. On Blue Gene/L ParaDiS will span, in a single simulation,
length scales from atomistic (nanometers) to visible (multiple microns) and time scales from
picoseconds to seconds and beyond. This computational resource will be sufficient to
directly compute, for the first time ever, the plastic strain of a material up to the strain levels
achieved in real life material applications.

How has the code been optimized on BG/L?

Primary optimizations have simply been through the use of compiler options, although
significant modifications were made to allow the code to execute with the limited memory
available on the nodes of BGL. No explicit task mapping was done to map the MPI tasks to
the BGL torus, however the runs were executed in a configuration that allocated the
ParaDiS tasks in the most optimal fashion.

1 Strain hardening is responsible for some well-known facts of everyday life, such as why an aluminum paper
clip eventually breaks after bending it back and forth several times.

How has the code been tested for scaling and performance?

To measure strong scaling, a set of runs was done in which an identical problem was run
an identical number of steps at processor counts of 4K and 8K nodes of BGL in co-
processor mode. At first glance, the scaling numbers were poorer than expected, however,
further analysis revealed that the results were being skewed by the dynamic load-balance
capability of the ParaDiS code. Given a specific initial problem, the load-balance of the
problem decreases as the number of processors is increased. The ParaDiS code
dynamically adjusts to even out the load balance and settle into the optimal work
distribution. However, the scaling tests have revealed that the current load-balancing
mechanism requires longer to converge on the optimal distribution as the number of
processors is increased. Thus, comparing runs of the same number of time steps at
different processor counts resulted in skewed results.

The initial scaling runs show a speedup just over 1.5x when doubling the processor count
from 4096 to 8192 while the load-balance at 8192 processors was significantly lower than
that on the 4096 processor run. Subsequent runs have been performed on Thunder (an
LLNL Linux cluster) in which similar load-balance between runs was achieved. These runs
showed a 7.85x speedup with an 8x increase in processors from 256 to 2048. Based on
these results we expect to see much improved scaling results on BGL with runs long
enough to achieve more optimal load-balancing.

Does a demo exist? If so, what is it and what does it need?

Not at this time. A movie will be provided.

Description of demo:

N/A

Who will run the demo at SC04?

N/A

